阻尼器是什么东西_汽车阻尼器是什么东西

       下面,我将用我自己的方式来解释阻尼器是什么东西的问题,希望我的回答能够对大家有所帮助。让我们开始讨论一下阻尼器是什么东西的话题。

1.大楼阻尼器是什么东西

2.复印机里的阻尼器有什么用

3.房屋阻尼器的作用是什么,大楼阻尼器安装的位置

4.风阻尼器是什么东西?什么原理?

阻尼器是什么东西_汽车阻尼器是什么东西

大楼阻尼器是什么东西

       大楼阻尼器是以提供运动的阻力,耗减运动能量的装置。阻尼器主要有液体阻尼器、气体阻尼器和电磁阻尼器三类。阻尼器对于补偿拾振器摆系统中很小的摩擦和空气阻力,改善频率响应等具有重要作用。阻尼器用于防震,低速时允许移动,在速度或加速度超过相应的值时闭锁,形成刚性支撑。

       在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从20世纪70年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。

       阻尼器又称阻尼装置。为了当受到冲击而产生的振动很快衰减所制成的增加阻尼的装置。理想的阻尼器有油阻尼器。常用油类有硅油、篦麻油、机械油、柴油、机油、变压器油,其形式可做成板式、活塞式、方锥体、圆锥体等。

       重力式货架中的阻尼器,又称减速器,主要用于消除重力式货架中货物产生的重力加速度,从而使得货物能够平稳,缓慢的沿轨道下滑,消除安全隐患。

复印机里的阻尼器有什么用

       阻尼器是以提供运动的阻力,耗减运动能量的装置。

什么是阻尼器?

       在了解什么是阻尼器之前先来了解一下仪器的运作原理。它通常是一种提供运动的阻力,以此来耗调运动能量的一种设备。其实这种设备早就已经不算是什么新的创新技术了,在航空、航天局、枪炮军工,或者是汽车行业当中已经有了各式各样的应用,自从20世纪七十年代之后,人们就慢慢地把这样的一项技术运用到了桥梁,建筑和铁路等结构形式的工程当中,发展可以说是相当迅速。

阻尼器的作用

       阻尼器的作用,其实在上面也有做稍微的说明,仔细的来讲,他的最主要作用就是减振消能,让一部分设备可以在动的状态下迅速停止而稳定在提前设定好的位置上,如果要做分类,他主要有气体、液体还有电池这三类,在不同的场合当中使用的类型也不同。

大楼阻尼器安装的位置

       一般都是安装在大楼靠近顶部的位置,具体要如何进行布置安装,要根据大楼的实际情况,当然阻尼器布置的越多性能越好,当时也要考虑到经济的情况,所以要好好的对布局、数量以及减震性能设计做好研究。

大楼阻尼器的工作原理

       当有强风来袭时,阻尼器会探测风力以及楼层的摇晃程度,来控制住重物向反方向做运动,从而来降低建筑物的摇晃,就像是人身处于在摇晃的木桥上,根据反方向来移动达到身体平衡的效果。

多少层楼需要阻尼器?

       当建筑物高度超过三百米的时候,一般就需要安装阻尼器了,而阻尼器一般都是被安装距离顶层很近的位置,若建筑物出现了频繁震动现象的话,阻尼器就会产生相反的作用力,以此降低频繁震动对建筑物所带来的不良影响,让建筑物内部的人感觉不到震动。

房屋阻尼器的作用是什么,大楼阻尼器安装的位置

       大家知道,使自由振动衰减的各种摩擦和其他阻碍作用,我们称之为阻尼。而安置在结构系统上的“特殊”构件可以提供运动的阻力,耗减运动能量的装置,我们称为阻尼器。

        利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器, 在美国被结构工程界接受以前,经历了一个大量实验,严格审查,反复论证,特别是地震考验的漫长过程。下面的流程1中示的过程,就概括了它

        在美国的发展过程:

        ·在航天、航空、军工、机械等行业中广泛应用,几十年成功应用的历史

        ·上世纪80年代开始在美国东西两个地震研究中心等单位作了大量试验研究, 发表了几十篇有关论文

        ·90年代,美国国家科学基金会和土木工程学会等单位组织了两次大型联合,由第三者作出的对比试验,给出了权威性的试验报告,供教授和工程师们参考

        ·在肯定以上成果的基础上被几乎各有关机构,规范审查,肯定并规定了应用办法

        ·管理部门通过,带来了上百个结构工程实际应用。 这些结构工程,成功地经历了地震、大风等灾害考验,十分成功。

        工程结构减震与阻尼器

        二十世纪,特别是近二、三十年人们对建筑物的抗振动的能力的提高已经做了巨大的努力,取得了显著的成果。这一成果中最引以为自豪的是“结构的保护系统”。人们跳出了传统增强梁、柱、墙提高抗振动的能力的观念,结合结构的动力性能,巧妙的避免或减少了地震,风力的破坏。基础隔震(Base Isolation),各种利用阻尼器(Damper) 吸能,耗能系统, 高层建筑屋顶上的质量共振阻尼系统(TMD)和主动控制( Active Control)减震体系都是已经走向了工程实际。有的已经成为减少振动不可少的保护措施。特别是对于难于预料的地震,破坏机理还不十分清楚的多维振动,这些结构的保护系统就显得更加重要。

        这些结构保护系统中争议最少,有益无害的系统要属利用阻尼器来吸收这难予预料的地震能量。利用阻尼来吸能减震不是什么新技术,在航天航空,军工,枪炮,汽车等行业中早已应用各种各样的阻尼器来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等工程中,其发展十分迅速。到二十世纪末,全世界已有近100多个结构工程运用了阻尼器来吸能减震。到2003年,仅Taylor公司就在全世界安装了110个建筑,桥梁或其它结构构筑物。

        泰勒Taylor公司从1955年起经过长期大量航天、军事工业的考验,第一个实验将这一技术应用到结构工程上,在美国地震研究中心作了大量振动台模型实验,计算机分析,发表了几十篇有关论文。结构用阻尼器的关键是持久耐用,时间和温度变化下稳定,泰勒公司的阻尼器经过了长期考验和各种对比分析,其他公司的产品很难望其向背。美国相应设计规范的制定都是基于泰勒公司阻尼器的产品。其产品技术先进,构造合理可靠,技术的透明度高,而且可以按设计者的要求制造适合各种用途的阻尼器。每个产品出厂前都经过最严格的测试,给出滞回曲线。泰勒Taylor公司从世界上130多个工程,32座桥梁的实际应用中,积累了大量的实际经验。

        阻尼器之分类:

        Damper:用于减振;

        Snubber:用于防震,低速时允许移动,在速度或加速度超过相应的值时闭锁,形成刚性支撑。

        阻尼器只是一个构件.使用在不同地方或不同工作环境就有不同的阻尼作用.Damper:用于减振;Snubber:用于防震,低速时允许移动,在速度或加速度超过相应的值时闭锁,形成刚性支撑。

        目前各种应用中有:弹簧阻尼器,液压阻尼器,脉冲阻尼器,旋转阻尼器,风阻尼器,粘滞阻尼器等

       [编辑本段]可控被动式电磁阻尼器的原理及初步实验研究

        引 言

        高速旋转机器的振动问题是一个比较突出且难以解决的问题。这类机器的转速高,都在超过临界乃至几阶临界转速以上运行。因此为了保证其安全运行,除了保证仔细的设计和精确的制造安装外,通常还使用阻尼器以减小振动。挤压油膜阻尼器和电磁阻尼器就是两种常用的阻尼器。本文设计了一种新的可控型被动式电磁阻尼器。

        可控型被动式电磁阻尼器的结构和工作原理

        图1为可控被动式电磁阻尼器的示意图。它没有位移传感器。其结构与挤压油膜阻尼器类似:旋转机械的转子(1)通过滚动轴承(2)或滑动轴承支承在铁芯(3)上。该铁芯再通过弹簧(4)支承在机座(5)上。弹簧的支承刚度可按使用要求设计,为支承系统的主刚度。在机座上环绕铁芯同心放置有四只电磁铁(6)。各磁铁线圈上都作用相同大小的直流励磁电压。

        图2示出可控被动电磁阻尼器所产生的附加刚度和阻尼随频率变化的情况。可以看出在整个频率范围内附加刚度的值是负的,且随着频率的升高负的刚度值降低。在高频区刚度值几乎为零。这种阻尼特性刚好符合旋转机械所要求的低频大阻尼高频小阻尼的特性。在可控被动电磁阻尼器的尺寸确定后,刚度和阻尼值就仅取决于静态励磁电流或励磁电压。改变励磁电压值就能改变刚度和阻尼,因而这种阻尼器是可控的。

        实验装置

        图3a为实验装置:一根细长轴,一端支承在普通的刚性滚珠轴承上,另一端支承在图1所示的电磁阻尼器支承上。转子由直流电机驱动。轴的振动和转速分别由涡流传感器和光电传感器检测。振动信号和转速信号由计算机通过AD板采集。图3b为提供主支承刚度的平板径向弹簧。该弹簧以弹性铝为材料,线切割加工。其刚度值由有限元计算和优化。在一只电磁阻尼器支承上有两只并排放置的弹簧,以保证对称性,利于系统建模。理论计算和实验测试均表明该转子的第一阶临界转速约为3900revs/min。

        实 验

        在不同励磁电压下测试转子的振动随转速的变化。图4给出了实验数据。图中的四条曲线代表励磁电压分别为0伏、9伏、12伏和15伏的情况。可以看出随着励磁电压的增大,电磁阻尼器提供的阻尼也增大。这使得转子的振幅得到抑制,从0.185mm降到0.56mm,减振效果是很明显的。从图中还可以看出,由于负的电磁刚度的存在,转子的临界转速有所降低。这和图2中的结果很一致,在65HZ临界转速附近,电磁附加负刚度很小因而它对临界转速的影响很小。当励磁电压为15伏时,转子的临界转速仅下降到3780revs/min。

        结 论

        被动式电磁阻尼器用于转子系统取得了较好的减振效果。这种阻尼器的阻尼产生机理是被动的而阻尼的大小则是随励磁电压的大小可控的。与挤压油膜阻尼器相比,被动式电磁阻尼器具有电磁轴承相对于普通轴承的大部分优点;与主动式电磁阻尼器相比,被动式电磁阻尼器的总体结构简单、造价低、可靠性更高。因而这是一种很有发展前途的行之有效的高速转子的减振阻尼装置。

        本文介绍了被动式电磁阻尼器在线性范围内的原理和仅进行了被动式电磁阻尼器的初步的减振实验,更多的非线性特性的研究和优化设计将在今后陆续报道。

风阻尼器是什么东西?什么原理?

大楼阻尼器是什么东西?

       阻尼器,最早用于航天、军工等之后,才运用到建筑,阻尼器在各种不同的领域有着各种的作用,因其具有良好的弹性,最主要的一个作用就是用来减震,可以在大楼受到冲击时,将受到的影响降到最低。

大楼阻尼器安装的位置

       一般都是安装在大楼靠近顶部的位置,具体要如何进行布置安装,要根据大楼的实际情况,当然阻尼器布置的越多性能越好,当时也要考虑到经济的情况,所以要好好的对布局、数量以及减震性能设计做好研究。

大楼阻尼器的工作原理

       当有强风来袭时,阻尼器会探测风力以及楼层的摇晃程度,来控制住重物向反方向做运动,从而来降低建筑物的摇晃,就像是人身处于在摇晃的木桥上,根据反方向来移动达到身体平衡的效果。

阻尼器的保养

       1、要经常性的去检查阻尼器的防护措施,其表面有没有划痕的存在,也要注意做好阻尼器的防腐防护,确保在日常的使用中不会出现问题。

       2、要对阻尼器的螺丝螺帽等各个部件做好检查,可以给阻尼器涂上一些润滑油,以保证在使用的过程中可以更加灵活的运用,也要对螺栓进行擦拭,确保能够使用。

       3、当发现螺丝或螺帽会有松动的情况时,要及时处理,用力的将其扭紧,也可以重新更换阻尼器,确保使用。

       风阻尼器是高层建筑应对地震,吸收震波的一种装置.由吊装在楼体中上部一个几百吨重的大铁球通过传动装置经由弹簧,液压装置吸收楼体的振动,达到抗震的目的 在中国第一个安装风阻尼器是台北的101大厦,台北的101大楼是在88-92楼层挂置一个重达680公吨的巨大钢球,利用摆动来减缓建筑物的晃幅. 上海环球金融中心是在90层还安装了2台用来抑制建筑物由于强风引起摇晃的风阻尼器! 旦建筑物因强风产生的摇晃可以通过传感器传至风阻尼器,此时风阻尼器的驱动装置会控制配重物的动作进而降低建筑物的摇晃程度。 通过引入风阻尼器,将能使强风时加在建筑物上的加速度(重力)降低40%左右。另外,风阻尼器也可以降低强震对建筑物,尤其是建筑物顶部的冲击。 一般说,在正常的风压状态下,距地面高度为10米处,如风速为5米/秒,那么在90米的高空,风速可达到15米/秒。若高达300-400米,风力将更加强大,即风速达到30米/秒以上时,摩天大楼会产生晃动。 超高层建筑结构之设计除了以安全为首要考量,还必须考虑居住上的舒适性。由风工程顾问所完成的试验与分析结果显示,大楼办公楼层顶部89楼於半年回超高层大楼的结构设计结果一般都决定於风力的高低,因此设计风力的准确性对结构设计甚为重要,由於本案为超高层大楼,除依循国内风力设计规范外,还委托加拿大 Rowan Williams Davies & Irwin Inc. (RWDI)风洞试验室研究大楼之风力设计载重,其设计风力之推导源於风洞试验,系以1:500比例制作工址半径600m内的风场环境模型,以10度角为单位置入风洞中模拟实际建筑物受风的情形。其中各个角度的风速高度分布特性则是由1:3000地形模型中进行边界层风洞试验(Boundary layer wind tunnel test)后而得到大气边界层风速分布,而结构体模型则是采用高频率力平衡模式(High-frequency force-balance),结构基本风压则是由应变计所量测到的弯矩扭力和剪力的分布曲线统计回归而得,并配合结构动力特性计算结构体的加速度反应后,一并提供设计单位作为设计风力之依据。 简单的说就是一般的摩天大楼都会在有风的情况下摇晃,这个装置就是摩天大楼产生的晃动。

       好了,今天关于“阻尼器是什么东西”的话题就讲到这里了。希望大家能够通过我的介绍对“阻尼器是什么东西”有更全面的认识,并且能够在今后的实践中更好地运用所学知识。如果您有任何问题或需要进一步的信息,请随时告诉我。